Technical perspective: By the end of the decade, we will deliver universal, fully fault-tolerant quantum computing

September 17, 2024

By Dr. Harry Buhrman, Chief Scientist for Algorithms and Innovation, and Dr. Chris Langer, Fellow

This week, we confirm what has been implied by the rapid pace of our recent technical progress as we reveal a major acceleration in our hardware road map. By the end of the decade, our accelerated hardware roadmap will deliver a fully fault-tolerant and universal quantum computer capable of executing millions of operations on hundreds of logical qubits. 

The next major milestone on our accelerated roadmap is Quantinuum Helios™, Powered by Honeywell, a device that will definitively push beyond classical capabilities in 2025. That sets us on a path to our fifth-generation system, Quantinuum Apollo™, a machine that delivers scientific advantage and a commercial tipping point this decade.

What is Apollo?

We are committed to continually advancing the capabilities of our hardware over prior generations, and Apollo makes good on that promise. It will offer:

  • thousands of physical qubits
  • physical error rates less than 10-4
  • All of our most competitive features: all-to-all connectivity, low crosstalk, mid-circuit measurement and qubit re-use
  • Conditional logic
  • Real-time classical co-compute
  • Physical variable angle 1 qubit and 2 qubit gates
  • Hundreds of logical qubits
  • Logical error rates better than 10-6 with analysis based on recent literature estimating as low as 10-10

By leveraging our all-to-all connectivity and low error rates, we expect to enjoy significant efficiency gains in terms of fault-tolerance, including single-shot error correction (which saves time) and high-rate and high-distance Quantum Error Correction (QEC) codes (which mean more logical qubits, with stronger error correction capabilities, can be made from a smaller number of physical qubits). 

Studies of several efficient QEC codes already suggest we can enjoy logical error rates much lower than our target 10-6 – we may even be able to reach 10-10, which enables exploration of even more complex problems of both industrial and scientific interest.

Error correcting code exploration is only just beginning – we anticipate discoveries of even more efficient codes. As new codes are developed, Apollo will be able to accommodate them, thanks to our flexible high-fidelity architecture. The bottom line is that Apollo promises fault-tolerant quantum advantage sooner, with fewer resources.

Like all our computers, Apollo is based on the quantum charged coupled device (QCCD) architecture. Here, each qubit’s information is stored in the atomic states of a single ion. Laser beams are applied to the qubits to perform operations such as gates, initialization, and measurement. The lasers are applied to individual qubits or co-located qubit pairs in dedicated operation zones. Qubits are held in place using electromagnetic fields generated by our ion trap chip. We move the qubits around in space by dynamically changing the voltages applied to the chip. Through an alternating sequence of qubit rearrangements via movement followed by quantum operations, arbitrary circuits with arbitrary connectivity can be executed.

The ion trap chip in Apollo will host a 2D array of trapping locations. It will be fabricated using standard CMOS processing technology and controlled using standard CMOS electronics. The 2D grid architecture enables fast and scalable qubit rearrangement and quantum operations – a critical competitive advantage. The Apollo architecture is scalable to the significantly larger systems we plan to deliver in the next decade.

What is Apollo good for?

Apollo’s scaling of very stable physical qubits and native high-fidelity gates, together with our advanced error correcting and fault tolerant techniques will establish a quantum computer that can perform tasks that do not run (efficiently) on any classical computer. We already had a first glimpse of this in our recent work sampling the output of random quantum circuits on H2, where we performed 100x better than competitors who performed the same task while using 30,000x less power than a classical supercomputer. But with Apollo we will travel into uncharted territory.

The flexibility to use either thousands of qubits for shorter computations (up to 10k gates) or hundreds of qubits for longer computations (from 1 million to 1 billion gates) make Apollo a versatile machine with unprecedented quantum computational power. We expect the first application areas will be in scientific discovery; particularly the simulation of quantum systems. While this may sound academic, this is how all new material discovery begins and its value should not be understated. This era will lead to discoveries in materials science, high-temperature superconductivity, complex magnetic systems, phase transitions, and high energy physics, among other things.

In general, Apollo will advance the field of physics to new heights while we start to see the first glimmers of distinct progress in chemistry and biology. For some of these applications, users will employ Apollo in a mode where it offers thousands of qubits for relatively short computations; e.g. exploring the magnetism of materials. At other times, users may want to employ significantly longer computations for applications like chemistry or topological data analysis. 

But there is more on the horizon. Carefully crafted AI models that interact seamlessly with Apollo will be able to squeeze all the “quantum juice” out and generate data that was hitherto unavailable to mankind. We anticipate using this data to further the field of AI itself, as it can be used as training data. 

The era of scientific (quantum) discovery and exploration will inevitably lead to commercial value. Apollo will be the centerpiece of this commercial tipping point where use-cases will build on the value of scientific discovery and support highly innovative commercially viable products. 

Very interestingly, we will uncover applications that we are currently unaware of. As is always the case with disruptive new technology, Apollo will run currently unknown use-cases and applications that will make perfect sense once we see them. We are eager to co-develop these with our customers in our unique co-creation program.

How do we get there?

Today, System Model H2 is our most advanced commercial quantum computer, providing 56 physical qubits with physical two-qubit gate errors less than 10-3. System Model H2, like all our systems, is based on the QCCD architecture.

Starting from where we are today, our roadmap progresses through two additional machines prior to Apollo. The Quantinuum Helios™ system, which we are releasing in 2025, will offer around 100 physical qubits with two-qubit gate errors less than 5x10-4. In addition to expanded qubit count and better errors, Helios makes two departures from H2. First, Helios will use 137Ba+ qubits in contrast to the 171Yb+ qubits used in our H1 and H2 systems. This change enables lower two-qubit gate errors and less complex laser systems with lower cost. Second, for the first time in a commercial system, Helios will use junction-based qubit routing. The result will be a “twice-as-good" system: Helios will offer roughly 2x more qubits with 2x lower two-qubit gate errors while operating more than 2x faster than our 56-qubit H2 system.

After Helios we will introduce Quantinuum Sol™, our first commercially available 2D-grid-based quantum computer. Sol will offer hundreds of physical qubits with two-qubit gate errors less than 2x10-4, operating approximately 2x faster than Helios. Sol being a fully 2D-grid architecture is the scalability launching point for the significant size increase planned for Apollo.

Opportunity for early value creation discovery in Helios and Sol

Thanks to Sol’s low error rates, users will be able to execute circuits with up to 10,000 quantum operations. The usefulness of Helios and Sol may be extended with a combination of quantum error detection (QED) and quantum error mitigation (QEM). For example, the [[k+2, k, 2]] iceberg code is a light-weight QED code that encodes k+2 physical qubits into k logical qubits and only uses an additional 2 ancilla qubits. This low-overhead code is well-suited for Helios and Sol because it offers the non-Clifford variable angle entangling ZZ-gate directly without the overhead of magic state distillation. The errors Iceberg fails to detect are already ~10x lower than our physical errors, and by applying a modest run-time overhead to discard detected failures, the effective error in the computation can be further reduced. Combining QED with QEM, a ~10x reduction in the effective error may be possible while maintaining run-time overhead at modest levels and below that of full-blown QEC.

Why accelerate our roadmap now?

Our new roadmap is an acceleration over what we were previously planning. The benefits of this are obvious: Apollo brings the commercial tipping point sooner than we previously thought possible. This acceleration is made possible by a set of recent breakthroughs.

First, we solved the “wiring problem”: we demonstrated that trap chip control is scalable using our novel center-to-left-right (C2LR) protocol and broadcasting shared control signals to multiple electrodes. This demonstration of qubit rearrangement in a 2D geometry marks the most advanced ion trap built, containing approximately 40 junctions. This trap was deployed to 3 different testbeds in 2 different cities and operated with 2 different collections of dual-ion-species, and all 3 cases were a success. These demonstrations showed that the footprint of the most complex parts of the trap control stay constant as the number of qubits scales up. This gives us the confidence that Sol, with approximately 100 junctions, will be a success.

Second, we continue to reduce our two-qubit physical gate errors. Today, H1 and H2 have two-qubit gate errors less than 1x10-3 across all pairs of qubits. This is the best in the industry and is a key ingredient in our record >2 million quantum volume. Our systems are the most benchmarked in the industry, and we stand by our data - making it all publicly available. Recently, we observed an 8x10-4 two-qubit gate error in our Helios development test stand in 137Ba+, and we’ve seen even better error rates in other testbeds. We are well on the path to meeting the 5x10-4 spec in Helios next year.

Third, the all-to-all connectivity offered by our systems enables highly efficient QEC codes. In Microsoft’s recent demonstration, our H2 system with 56 physical qubits was used to generate 12 logical qubits at distance 4. This work demonstrated several experiments, including repeated rounds of error correction where the error in the final result was ~10x lower than the physical circuit baseline.

In conclusion, through a combination of advances in hardware readiness and QEC, we have line-of-sight to Apollo by the end of the decade, a fully fault-tolerant quantum advantaged machine. This will be a commercial tipping point: ushering in an era of scientific discovery in physics, materials, chemistry, and more. Along the way, users will have the opportunity to discover new enabling use cases through quantum error detection and mitigation in Helios and Sol.

Quantinuum has the best quantum computers today and is on the path to offering fault-tolerant useful quantum computation by the end of the decade.

About Quantinuum

Quantinuum, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. Quantinuum’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, Quantinuum leads the quantum computing revolution across continents. 

Blog
June 10, 2025
Our Hardware is Now Running Quantum Transformers!

If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that Quantinuum continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.

The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.

Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.

Why this matters: Quantum AI, born native

This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.

Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.  

Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.

That’s what we’ve built.

What makes Quixer different?

Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.

Quixer is different: it’s not a translation – it's an innovation.

With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.

As quantum computing advances toward fault tolerance, Quixer is built to scale with it.

What’s next for Quixer?

We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.

This is just the beginning.

Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.

This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that Quantinuum is leading the charge with real results, not empty hype.

Stay tuned. The revolution is only getting started.

technical
All
Blog
June 9, 2025
Join us at ISC25

Our team is participating in ISC High Performance 2025 (ISC 2025) from June 10-13 in Hamburg, Germany!

As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the Quantinuum team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.

Quantinuum is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.

  • Our industry-leading quantum computer holds the record for performance with a Quantum Volume of 2²³ = 8,388,608 and the highest fidelity on a commercially available QPU available to our users every time they access our systems.
  • Our systems have been validated by a #1 ranking against competitors in a recent benchmarking study by Jülich Research Centre.
  • We’ve laid out a clear roadmap to reach universal, fully fault-tolerant quantum computing by the end of the decade and will launch our next-generation system, Helios, later this year.
  • We are advancing real-world hybrid compute with partners such as RIKEN, NVIDIA, SoftBank, STFC Hartree Center and are pioneering applications such as our own GenQAI framework.
Exhibit Hall

From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.

Presentations & Demos

Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.

Multicore World Networking Event

  • Monday, June 9 | 7:00pm – 9:00 PM at Hofbräu Wirtshaus Esplanade
    In partnership with Multicore World, join us for a Quantinuum-sponsored Happy Hour to explore the present and future of quantum computing with Quantinuum CCO, Dr. Nash Palaniswamy, and network with our team.
    Register here

H1 x CUDA-Q Demonstration

  • All Week at Booth B40
    We’re showcasing a live demonstration of NVIDIA’s CUDA-Q platform running on Quantinuum’s industry-leading quantum hardware. This new integration paves the way for hybrid compute solutions in optimization, AI, and chemistry.
    Register for a demo

HPC Solutions Forum

  • Wednesday, June 11 | 2:20 – 2:40 PM
    “Enabling Scientific Discovery with Generative Quantum AI” – Presented by Maud Einhorn, Technical Account Executive at Quantinuum, discover how hybrid quantum-classical workflows are powering novel use cases in scientific discovery.
See You There!

Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.

We look forward to seeing you in Hamburg!

events
All
Blog
May 27, 2025
Teleporting to new heights

Quantinuum has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.

Last year, we published a paper in Science demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.

Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.

Figure 1: Fidelity of two-bit state teleportation for physical qubit experiments and logical qubit experiments using the d=3 color code (Steane code). The same QASM programs that were ran during March 2024 on the Quantinuum's H2-1 device were reran on the same device on April to March 2025. Thanks to the improvements made to H2-1 from 2024 to 2025, physical error rates have been reduced leading to increased fidelity for both the physical and logical level teleportation experiments. The results imply a logical error rate that is 2.3 times smaller than the physical error rate while being statistically well separated, thus indicating the logical fidelities are below break-even for teleportation.

This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.

Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.

This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. Quantinuum continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.

technical
All